I. Recall that equations with 2 variables can only be slued When 2 equations are given. The solution represents
The point of intersection of the two graphs:

(4) $y=2 x-1$
(B) $y=-3 x+4$

To solve algebraically we can use substitution or
elimination: Substitution

Elimination

(1) $\begin{aligned} 5 x-7 y & =-2 \\ \text { (2) } x-4 y & =-3\end{aligned}$

$$
\begin{aligned}
& \text { (2) } 1 \text { (2) }-3 x-2 y=-23 \\
& 6 x-12 y=13
\end{aligned}
$$

- Multiply to get equal
coefficients for I variable.
Solve for x in ign (2)
$x-4 y=-3$
$x=4 y$
(1) $(-3 x-2 y=-23)^{x^{2}}$. MULTIPLY BY 2

Now we substitute in EQN (1)
$-6 x-4 y=-46$
(1) $5 x-7 y=-2$ SUB AGAiN WITH NOW WE CAN ADD oe SUBTRACT THE TWO EGNS
$\begin{array}{lll}5(4 y-3)-7 y=-2 & \text { THE } y \\ \text { solve for } y & y=-2 & \text { (2) } x-4 y=-3\end{array} \quad \begin{aligned} & -6 x-4 y=-46 \\ & 20 y-15-7 y=-12 y=13\end{aligned}$ spp sign $+/-$
$20 y-15-7 y=-2$
$13 y=13$
(2) $\begin{aligned} x-4 y & =-3 \\ x-4(1) & =-3 \\ x-4 & =-3\end{aligned}$
$\begin{array}{rl}y=1 & x-4 \\ x & =-3 \\ x & =1\end{array}$
$(1,1) \leftarrow$ solution
II. Remember no solution: Limos don't cross ie. Parallel Parallel lines have same slope Lines

$$
6 x=\frac{52}{4}+\frac{99}{4}
$$

III
Infinite The two equations are actually the same line!

$$
\begin{aligned}
& \text { e.g.(1) }(y=1 / 3 x+2)^{\prime} \rightarrow \begin{array}{l}
\text { eliminate } \quad 6 y \\
\text { sub } 6 y \\
6 y+2 x+12
\end{array} \\
& \text { \& (2) } 6 y=2 x+12
\end{aligned} \quad \begin{aligned}
& 0=0 \\
& \text { always tue } \\
& \text { infinite solutions }
\end{aligned}
$$

$$
\begin{aligned}
& 0-16 y=-33 \\
& \text { (2) } 6 x-12 y=B
\end{aligned}
$$

