Day 6: GEOMETRIC SERIES.

- The terms of a geometric sequence expressed as alum

SUM OF A GEOMETRIC SERIES

$$
\mathbf{s}_{\mathrm{n}}=\frac{t_{1}\left(r^{(n)}-1\right)}{r-1}, r \neq 1 * \longleftarrow \text { need to }{ }^{*} \text { " }
$$

$t_{1}=$ first term
$t_{n}=n^{\text {th }}$ term
$r=$ common ratio
$S_{n}=$ sum of the first n
OR $\quad \mathbf{S}_{\mathrm{n}}=\frac{\left(-t_{n}\right)-t_{1}}{r-1}, r \neq 1$
need to know t_{n}
*see p. 48-49 for developing formula

EX. 1 Determine the sum of the firs 10 terms of each geometric series

$$
n=10
$$

a) $4+12+36+\ldots$
b) $t_{1}=5$ and $\mathrm{r}=1 / 2$

$$
\begin{aligned}
& S_{n}=\frac{t_{1}\left(r^{n}-1\right)}{r^{-1}} \\
& S_{10}=\frac{4\left(3^{10}-1\right)}{3-1} \\
& S_{10}=118,096
\end{aligned}
$$

$$
\begin{aligned}
& S_{n}=\frac{t_{1}\left(r^{n}-1\right)}{r-1} \\
& S_{n}=\frac{5\left(1^{10}-1\right)}{1 / 2-1} \\
& S_{n}=9.99
\end{aligned}
$$

EX. 2 Determine the sum of each geometric series.
Method 1: Determine Number of Terms Method 2: Use second Formula $\mathbf{S}_{\mathrm{n}}=\frac{r t_{n}-t_{1}}{r-1}$

$$
\text { TRICKIER } \overparen{\Gamma \equiv-4}
$$

$$
n=?
$$

$$
\begin{aligned}
& \text { a) } \frac{1}{27}+\frac{1}{9}+\frac{1}{3}+\ldots+729 \quad \text { } \quad \begin{array}{l}
\text { t } \\
n
\end{array} \text { ? } \\
& \text { b) } 4-16+64-\ldots-65536 \\
& S_{n}=\frac{r t_{n}-t_{1}}{r-1} \\
& r=\frac{T_{2}}{T_{1}} \\
& S_{n}=\frac{r t_{n}-t_{1}}{r-1} \\
& S_{n}=3(729)-\frac{1}{27} \\
& \text { 3-1 } \\
& S_{n}=1093.5 \\
& r=\frac{\frac{1}{9}}{\frac{1}{27}} \\
& S_{n}=\frac{(-4)(-65536)-(4)}{-4-1} \\
& r=\frac{1}{9} \div \frac{1}{27} \quad S_{n}=-52428 \\
& r=\frac{1}{9} \times \frac{27}{1} \\
& r=\frac{27}{9} \text { or } 3
\end{aligned}
$$

EX. 3 Your parents have come up with a reward system for the summer holidays if you keep your room clean! The deal is you are given a penny on the first day of summer vacation, two pennies on the second day, four pennies on the third day, eight pennies on the fourth day and so on... doubling for each succeeding day.
a) Write the first seven terms of this geometric sequence.

$$
1_{1}^{4}+2^{4}+4^{d}+8^{4}+16^{4}+32+64
$$

b) Write an expression that shows the sum of all the money earned in the first week.
c) How much money do your parents give you on the $64^{\text {th }}$ day?

$$
\begin{aligned}
& t_{64}=t_{1} r^{n-1} 64-1 \\
& t_{64}=0.01(2) \\
& t_{64}=9.2 E 16
\end{aligned} \quad \$ 9.2 \times 10^{16}
$$

d) Determine how much money you would earn if you kept your room clean all summer.

$$
\begin{aligned}
& S_{n}=\frac{t_{1}\left(r^{n}-1\right)}{r-1} \\
& S_{n}=\frac{0.01\left(2^{64}-1\right)}{2-1} \\
& S_{n}=1.84 \times 10^{17} \\
& 184000000000000000
\end{aligned}
$$

1. Find S_{7} for each series:
a) $5-10+20-40+\ldots$
b) $12+6+3+1.5+\ldots$
$S_{7}=215$
$S_{7}=\mathbf{2 3 . 8 1 2 5}$
2. Find the sum of the given series: $1+5+25+\ldots+3125 \quad \mathbf{S}_{\mathrm{n}}=3906$
3. A doctor prescribes 200 mg of medication on the first day of treatment. The dosage is halved on each successive day for 1 week. To the nearest milligram, what is the total amount of medication administered?

$$
\mathrm{S}_{\mathrm{n}}=397 \mathrm{mg}
$$

4. Find S_{n} for a series with $t_{n}=5(2)^{n-1}$. Careful!!!
$S_{n}=5\left(2^{n}-1\right)$

BONUS: The second term of a geometric series is 15 and the sum of the first 3 terms is 93. Find the first 3 terms of the series. Show your work on the back.

