* DAY 3 NOTES

PC 11 2.2 TRIGONOMETRIC RATIOS OF ANY ANGLE

INVESTIGATE:

A) TRIGONOMETRIC RATIOS OF ANY ANGLE $0^{\circ} \le \theta \le 360^{\circ}$

- θ is any angle is standard position
- P(x, y) is any point on its terminal arm, at a distance "r" from the origin
- Reference triangle is created by drawing a line
- 4 perpendicular to the x-axis through point P(x, y)
- 1) Use the Pythagorean Theorem to show the relationship between x, y and r. Solve for r. $a^{2} + b^{2} = c^{2}$ $x^{2} + y^{2} = r^{2}$ $\sqrt{x^{2} + y^{2}} = c^{2}$ r =_____
- 2) Use primary trigonometric ratios to show the relationship between θ , x, y and r.

a)
$$\sin \theta = \frac{\varphi \cdot \frac{\gamma}{r}}{r}$$
 b) $\cos \theta = \frac{\frac{\gamma}{r}}{r}$ c) $\tan \theta = \frac{\frac{\gamma}{r}}{r}$

B) SIGNS OF TRIGONOMETRIC RATIOS IN EACH QUADRANT

- Plot the given point P(x, y). Sketch reference triangle.
- Label the point, sides of triangle, θ , and θ_R . Determine primary trig ratios.

Pre-Calculus Math 11 Section 2.2 Page 9

WRITE TRIGONOMETRIC RATIOS FOR ANGLES IN ANY QUADRANT

- @ Sketch and label the reference triangle \rightarrow point, sides of triangle, θ , and $\theta_{\rm R}$
- ② Determine the distance, r, from the P(x, y) to the origin \rightarrow Pythagorean Theorem
- ${}^{(3)}$ Write out the primary trigonometric ratios ${\bf \rightarrow}~\sin\theta$, $\cos\theta$ and $\tan\theta$
- ④ Check answer makes sense \rightarrow quadrant signs ALL STUDENTS TAKE CALCULUS?
- **EX. 1** The point P(-8, 15) lies on the terminal arm of an angle, θ , in standard position. Determine the exact trigonometric ratios for $\sin \theta$, $\cos \theta$ and $\tan \theta$.

See Example 1 & Your Turn

p. 91

Pre-Calculus Math 11 Section 2.2 Page 10