Day 3 Completing the Square: Notes
CLUE: WHEN ONLY AN X^{2} TERM

1. Some quadratics can be solved by taking the square roots of both sides:

$$
\text { no } x \operatorname{term} \bigcirc \sqrt{ }
$$

egg.

$$
\begin{aligned}
x^{2} & =64 \\
\sqrt{x^{2}} & =\sqrt{64} \\
x & = \pm 8
\end{aligned}
$$

$$
\begin{aligned}
2 x^{2}-8 & =0 \\
2 x^{2} & =8 \\
x^{2} & =4 \\
\sqrt{x^{2}} & =\sqrt{4} \\
x & = \pm 2
\end{aligned}
$$

x
2. Others, where there is a linear term included, must be solved by factoring or graphing or by completing the square.

$$
\begin{aligned}
& \sqrt{20} \\
& \sqrt{4 \cdot 5} \\
& \sqrt{4} \cdot \sqrt{5} \\
& 2 \sqrt{5}
\end{aligned}
$$

e.g. Solve $x^{2}-8 x-4=0$ by completing the square. .

$$
x^{2}-8 x=4
$$

$$
\begin{aligned}
& \text { move the "C" term "DNF } \\
& \text { to other side }
\end{aligned}
$$

(3)

$$
x^{2}-8 x+16=4+16
$$

EXACT ROOTS

$$
\begin{aligned}
& (x-4)^{2}=20 \\
& \sqrt{(x-4)^{2}}=\sqrt{20}
\end{aligned}
$$

$$
4 \pm 2 \sqrt{5}
$$

$$
14+2 \sqrt{5} \text { \& } 4-2 \sqrt{5}
$$

©

$$
\begin{aligned}
x-4 & = \pm \sqrt{20} \\
x & =4 \pm \sqrt{20}
\end{aligned} \quad \text { DECIMAL } \quad 8.47 \Leftrightarrow-0.47
$$

Solve $x^{2}-21=-10 x$ by completing the square.

$$
\left.\begin{aligned}
x^{2}+10 x & =21 \\
x^{2}+10 x+25 & =21+25 \\
(x+5)^{2} & =46 \\
\sqrt{(x+5)^{2}} & =\sqrt{46} \\
x+5 & = \pm \sqrt{46} \\
x & =-5
\end{aligned} \right\rvert\, \begin{aligned}
-5+\sqrt{46} & \text { \& }
\end{aligned} \quad-5-\sqrt{46}
$$

b) Check your answers by graphing. c) Can you solve these by factoring?

Part II.
How to solve a quadratic equation by completing the square when $a \neq 1$

1. Determine the roots of $-2 x^{2}-3 x+7=0$.

Grade 7

$$
\begin{aligned}
& \frac{3}{2} \times \frac{1}{2}=\left(\frac{3}{4}\right)^{2}=\frac{9}{16} \\
& \frac{7}{2}+\frac{9}{16} \\
& \frac{56}{16}+\frac{9}{16}=\frac{65}{16}
\end{aligned}
$$

$$
-2 x^{2}-3 x=-7
$$

$$
-2\left(x^{2}+\frac{3}{2} x\right)=-7
$$

$$
x^{2}+\frac{3}{2} x=\frac{-7}{-2}
$$

$$
x^{2}+\frac{3}{2} x=\frac{7}{2}
$$

$$
\begin{aligned}
x^{2}+\frac{3}{2} x+\frac{9}{16} & =\frac{\frac{7}{2}}{2}+\frac{9}{16} \\
\sqrt{\left(x+\frac{3}{4}\right)^{2}} & =\sqrt{\frac{65}{16}}
\end{aligned}
$$

$$
\begin{aligned}
& x+\frac{3}{4}= \pm \sqrt{\frac{65}{16}} \\
& x=\frac{-3}{4} \pm \sqrt{\frac{65}{16}} \\
& x=\frac{-3}{4} \pm \frac{\sqrt{65}}{4} \\
& x=\frac{-3 \pm \sqrt{65}}{4} \text { exact } \\
& 1.27 \&-2.77
\end{aligned}
$$

The path of a soccer ball kicked by a goalie is approximated by quadratic function:

$$
h(x)=-0.06 x^{2}+3.168 x-35.34
$$

h : height (m)
x : horizontal distance travelled from the goal line (m)

Use decimals

b) How far does the ball travel before it hits the ground?

$$
\begin{array}{r}
36.79 \\
-\quad 16.00 \\
\hline 20.79 \mathrm{~m}
\end{array}
$$

