SOLVING QUADRATIC EQUATIONS BY FACTORING: Day 2 Notes

- The roots of a quadratic equation occur when the product of the factors is equal to zero
- zero product property: "If the product of two real numbers is zero, then one or both of the numbers must be zero" ie. de $=0 \ldots$ then $d=0$ and / or $e=0$

Solve a Quadratic Equation or Function
ex. $\quad 3 x^{2}-2 x=5$
$3-5$

1) Quadratic must equal zero

$$
b=-2
$$

$$
-5,3 \text {-pick }
$$

4) Solutions are the roots
5) Verify your solution (s)

- calculator
- by substitution

$$
\begin{array}{ccr}
(3 x-5)(x+1)=0 & x+1=0 & 3 x-5=0 \\
3(-1)^{2}-2(-1)=5 & 3\left(\frac{5}{3}\right)^{2}-2\left(\frac{5}{3}\right)=5 & x=-1 \\
3+2=5 & \frac{25}{3}-\frac{10}{3}=5
\end{array}
$$

Two answers:

EX. 3 Determine the roots of each quadratic equation. Verify your solutions.
a) $x^{2}+6 x+9=0$
b) $x^{2}+4 x-21=0$

Simple
trinomial

$$
\begin{aligned}
& (x+3)(x+ \\
& \text { sol } x=-3
\end{aligned}
$$

\because

$$
\begin{aligned}
& (x+7)(x-3)=0 \\
& x=-7 \& 3
\end{aligned} \left\lvert\, \begin{array}{cc}
\downarrow & b=-9 \\
2 x^{2}-10 x \mid+1 x-5=0 \\
2 x(x-5) \mid 1(x-5) \\
(x-5)(2 x+1)=0 \\
4 & 4 \\
x=5 \quad x=-\frac{1}{2}
\end{array}\right.
$$

c) $2 x^{2}-9 x-5=0$

$$
a \times c=-10
$$

$$
-10+1
$$

Types to remember:
GCF $\quad 6 x^{2}-24 x=0$

$$
6 x(x-4)=0
$$

$$
\begin{aligned}
& 25 x^{2}=9 \quad \leftrightarrow \quad 0 R \ldots . \\
& \begin{array}{l}
25 x^{2}-9=0 \text { dithenes } \\
(5 x+3)(5 x-3)=0 \\
x=3+3+3
\end{array} \\
& \text { diftemem } \\
& x=-\frac{3}{5} \notin+\frac{3}{5}
\end{aligned}
$$

