DAY 7 Lesson Notes

PC 11: Completing the Square: Word Problems

$$
\text { Revenue }=\text { Price } \times \text { Amount Sold }
$$

1) Last year the grad photo session fee was $\$ 10$ and 400 grads booked photo sessions. This year the grad committee estimates that for every $\$ 1$ increase in the price, they expect to have 20 fewer grad photo sessions booked. What price will generate the max revenue.
New price: $10+x)^{15}$ let $x={ }^{\# n}$ number of 1 dolor increases
New amount: 400-20X 300

call

$$
V(5,4500)
$$

2) A company can sell 60 canoes at $\$ 500$ each. For every $\$ 50$ increase in the price, the number of canoes sold will drop by 4. Calculate the maximum revenue and price.
$R=$ Price x Amount New price $(500+50 x)$ let $x=\#$ of $50^{\$}$ increases
Amount: $(60-4 x)$
$R=(500+50 x)(60-4 x) \quad$ complete Square:

$$
R=30000-2000 x+3000 x-200 x^{2}
$$

$$
R=-200 x^{2}+1000 x+30,000
$$

Max revenue is

$$
\$ 31,250.00
$$

pace is

$$
\begin{aligned}
& R=-200\left(x^{2}-5 x\right)+30,000 \\
& R=-200\left(x^{2}-\frac{\left.5 x+\frac{25}{4}-\frac{25}{4}\right)+30,000}{R=-200}\left[\left(x-\frac{5}{2}\right)^{2}-25 / 4\right]+30,000\right.
\end{aligned}
$$

$$
R=-200\left(x-\frac{5}{2}\right)^{2}+1250+30,000
$$

$$
R=-200(x-5 / 2)^{2}+31,250
$$

$$
\$ 625.00
$$

$$
v(2.5,31250)
$$

$$
\begin{align*}
& \text { max Revenue }=\text { Price } \times \text { Amount } \\
& R=\left(-20 x^{2}+200 x\right)+4000 \quad R=(10+x)(400-20 x) \\
& R=-20\left(x^{2}-10 x\right)+4000 \\
& R=-20\left(\left(x^{2}-10 x+25\right)-25\right)+4000 \\
& R=-20 x^{2}+200 x+4000 \text { Quadratic } \\
& -20\left[(x-5)^{2}-25\right]+4000 \\
& R=-20(x-5)^{2}+500+4000 \\
& \begin{array}{l}
500+4000 \\
R=-20(x-5)^{2}+4500 \quad V\binom{5,4500}{x}
\end{array}
\end{align*}
$$

Area Questions:

Usually involve a three sided figure against a wall etc.
3) A rectangular pen is constructed with 300 m of fencing against the barn wall. What dimensions give the maximum area?
Area: $l \cdot w$
Area $=(x)(300-2 x)$
Area $=300 x-2 x^{2}$

Area $=-2 x^{2}+300 x$

$$
\downarrow, ~(75,11250)
$$

4. Find the value of x that gives the maximum area:
$5 x+10$
use decimals

$42-2 X$
5. Projectiles: They usually give you the formula for the situation. Use graphing calculator if the numbers are "ugly"

A ball is thrown through the air and the function $H(t)=-4.9 t^{2}+61.25 t$ describes its height through the flight, where $t=$ time in seconds. What is the maximum height and when does this occur'?

