Linear Inequalities

January 12, 2018 9:40 AM

Inequalities Page 1

Example - Solve the inequality by graphing $3 y-2 x \geq 6$.

1. Rearrange the inequality so it's in $m x+b$ form. Don't forget to flip the inequality if you multiply or divide by a negative number.
2. Decide whether to use a solid line or dotted line:

- If the inequality is \leq or \geq, points on the line are included in the solution (due to the 'equals to' line under the sign), so we keep the line solid.
- If the inequality is \langle or \rangle, points on the line are not included in the inequality, so we draw a dotted line.

3. Graph the line using slope and y-intercept. The line is called the boundary.
4. For $y>m x+b$ or $y \geq m x+b$, solutions to the inequality are all of the points above the line, so shade above. For $y<m x+b$ or $y \leq m x+b$, shade below the line. The shading represents the solution region: all of the points that satisfy the inequality.
5. CHECK: Pick a test point in the shaded region and test its coordinates in the inequality. If it satisfies the inequality, you've been successful. If it doesn't satisfy the inequality, you either shaded the incorrect region, or the boundary line has been graphed incorrectly.

word problem

Example - Graph $4 x-2 y>10$. Determine if $(1,3)$ is part of the solution. dashed line Luz

$$
\begin{aligned}
4 x-2 y & >10 \\
-2 y & >-4 x+10 \\
y & <\frac{-4 x}{-2}+\frac{10}{-2}
\end{aligned}
$$

3
FALSE

\qquad not \leq (Solid line)

$$
y<2 x-5
$$

$$
\frac{2}{1} \text { op er }
$$

Example - Suppose you have received a gift card for a music downloading service. The card has a value of $\$ 15$. Individual songs (x) cost $\$ 1$ and a complete album (y) costs $\$ 5$. Write and graph a linear inequality to model the situation. Then describe all possible combinations of albums and songs that will cost $\$ 15$, and two possible combinations of albums and songs that will cost less than $\$ 15$.

Let $x=$ number of songs
Let $y=$ number of albums
inequality: $1 x+5 y \leq 15$
rearranged:

$$
\rightarrow y \leq-\frac{1}{5} x+3
$$

all combinations that cost $\$ 15$:
$15 x \neq 0 y$

two combinations less than \$15:

9.2 - Quadratic Inequalities in One Variable

Date:
KeyIdeas: To solve using either GRAPHNG OR ALGEBRA

$$
\begin{aligned}
& \text { Example - Solve } x^{2}+2 x>8 \text { by graphing, and then using test intervals. Graph the solution. } \\
& \text { Graphing 1. Rewrite the inequality as a quadratic equation. } \\
& \text { Steps } \\
& \text { 2. Find the roots (} x \text {-intercepts). } \\
& \text { 3. Sketch a graph and use the visual to solve the inequality. } \\
& \rightarrow \text { if the quadratic is }>0 \text {, find the domain where the graph is above the } \mathrm{x} \text {-axis } \\
& \rightarrow \text { if the quadratic is }<0 \text {, find the domain where the graph is below the } \mathrm{x} \text {-axis } \\
& \text { 1) } x^{2}+2 x>8 \\
& \begin{array}{l}
x^{2}+2 x-8>0 \\
\text { 2) If this was a parabola, } x \text { int are?? }
\end{array} \\
& x^{2}+2 x-8=0 \\
& (x+4)(x-2)=0 \\
& x=2,-4 \\
& \text { 3) } \\
& \text { ALGEBRA: } \\
& \text { Test } \quad \text { 1. Find the critical numbers (the zeros) of the inequality. } \\
& \text { Interval 2. Make an } x \text {-axis diagram of the resulting test intervals. } \\
& \text { Steps } \\
& \text { 3. Test a value from each interval using the original inequality. } \\
& \begin{aligned}
&\mid 1) \\
& x^{2}+2 x>8 \\
& x^{2}+2 x-8>0 \\
&(x+4)(x-2)>0 \\
&-4,2
\end{aligned}
\end{aligned}
$$

Example - Solve $x^{2}-10 x+16 \leq 0$ using both methods and graph the solution.
*if the quadratic is ≥ 0, find the domain where the graph is above or on the x-axis
$*_{\text {if }}$ the quadratic is ≤ 0, find the domain where the graph is below or on the x-axis
Graphing: $\begin{gathered}x^{2}-10 x+16 \leq 0 \\ (x-2)(x-8) \leq 0 \\ x=2,8\end{gathered}$

Solution $2 \leq x \leq 8$
\qquad

Test Intervals:

Example - Graph the quadratic function $f(x)=x^{2}-6 x+9$. What is the solution to: a) $x^{2}-6 x+9 \geq 0 \quad$ b) $x^{2}-6 x+9>0 \quad$ c) $x^{2}-6 x+9 \leq 0$ d) $x^{2}-6 x+9<0$

$$
\begin{aligned}
& x^{2}-6 x+9=f(x) \\
& x-3)(x-3)=f x \\
& \text { root } x=3
\end{aligned}
$$

b) $x \neq 3, x \in R$
c) $x=3$
d) no solution

Inequalities Page 6

Example - Solve $-2 x^{2}+7 x>-12$ by graphing. Then graph the solution.

$$
\begin{array}{rlrl}
-2 x^{2}+7 x+12>0 & a \cdot c & =-24 \\
\text { QUAD EQN: } & b & =7
\end{array}
$$

Roots By QUAD EQN:

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-7 \pm \sqrt{7^{2}-4(-2)(12)}}{x=\frac{-7 \pm \sqrt{49+96}}{-4}} \\
& x=\frac{-7 \pm \sqrt{145}}{-4} \\
& x=4.76 \&-1.26
\end{aligned}
$$

between the roots the parabola is above the axis

$$
\begin{gathered}
\{x \times 1.126 \times x<4.76, x \in 6\} \\
\text { DO DAY } Z
\end{gathered}
$$

4.76 d -1.26

Key Ideas:

Example - Solve the inequality by graphing $y+2<(x-4)^{2}$.

1. Rearrange the inequality so y is all by itself on one side.
2. Decide whether to use a solid curve or dotted curve:

- If the inequality is \leq or \geq, points on the parabola are included in the solution (due to the 'equals to' under the sign), so we keep the curve solid.
- If the inequality is \langle or $>$, points on the parabola are not included in the inequality, so we draw a dotted curve.

3. Graph the parabola using vertex form. The line is called the boundary.
4. For $y>a x^{2}+b x+c$ or $y \geq a x^{2}+b x+c$, solutions to the inequality are all of the points above the parabola, so shade above. For $\mathrm{y}<a x^{2}+b x+c$ or $\mathrm{y} \leq a x^{2}+b x+c$, shade below the parabola. The shading represents the solution region: all of the points that satisfy the inequality.
5. CHECK: Pick a test point in the shaded region and test its coordinates in the inequality. If it satisfies the inequality, you've been successful. If it doesn't satisfy the inequality, you either shaded the incorrect region, or the boundary curve has been graphed incorrectly.
1)
2)
3)
4)
5)

Example - Solve by graphing: $y \leq-x^{2}+2 x+4$. Is $(-1,1)$ a solution? Is $(2,5)$?

Example - Solve by graphing: $y+5 \geq x^{2}-4 x$.

