$$
" r \text { " } x
$$

I. A geometric sequence has a common ratio, or multiplier, between the terms:
e.g. $2,4,8,16 \ldots r=2$ when $r<1$ (fraction or decimal)

$$
3,-9,27,-81 \ldots r=-3 \quad 27,9,3 \ldots r=\frac{1}{3}
$$

To calculate the ratio, r, divide a term by the previous term.

$$
\begin{array}{rr}
r=\frac{T_{2}}{T_{1}} & \quad e . g_{0} \\
r=\frac{T_{2}}{T_{1}} & r=\frac{4}{-16}=-\frac{1}{4}
\end{array}
$$

II. The formula for the general term (t_{n}) is:

$$
t_{n}=t_{1} r^{n-1 / \text { exponent }}
$$

$-16,4,-1 \ldots$ What is

$$
\begin{aligned}
& t_{n}=t_{1} r^{n-1} \\
& t_{9}=-16 \cdot\left(-\frac{1}{4}\right)^{9-1}
\end{aligned}
$$ the $9^{\text {th }}$ term?

III. Sample problems:

$$
t_{q}=-16 \cdot\left(\frac{-1}{4}\right)^{8} \quad 0.00001525
$$

1. In the sequence $6,-3, \frac{3}{2},-\frac{3}{4}, \ldots .$.
a) Calculate the common ratio

$$
\begin{array}{ll}
R=\frac{T_{2}}{T_{1}} & \tau_{11}=T_{1} r^{n-1} \\
R=\frac{-3}{6} & t_{11}=6(-1 / 2)^{11-1} \\
R=-\frac{1}{2} & t_{11}=6(-1 / 2)^{10} \\
t_{11}=0.0058
\end{array}
$$

b) The $11^{\text {th }}$ term is?

$$
1.525 t^{-5}
$$

$$
+q=-16 \cdot\left(\frac{1}{4}\right)^{8}
$$

$$
T_{9}=-16 \times 1.525 \times 10^{-2}
$$

$$
\begin{aligned}
& \text { The } 11^{1 \text { th }} \text { term is? } \\
& T_{9}=-2.4 \times 10^{-4}
\end{aligned}
$$

$$
-0.00024
$$

- - - $\overline{15}$ terms

2. Bacteria can double by cell division every 20 minutes. If 10 bacteria cells were present at the back of your throat at the start, how many will there be in 5 hours?

$$
\begin{aligned}
& t_{1}=10 \\
& r=2 \\
& n=15
\end{aligned}
$$

$$
\left.\begin{aligned}
& t_{15}=t_{1,2} 2^{15-1} \\
& t_{15}=10 \cdot 2^{14} \\
& t_{15}=163,840
\end{aligned} \right\rvert\, \begin{array}{llll}
\text { Day } 5 \\
78 \% & \rightarrow 0.78 \\
\text { reduce by } & 18 \% & r=0.82
\end{array}
$$

