Pre-Calc 11 Rational Equations Notes:
Steps to follow:
(1) Factor each denominator
(2) Determine non-permíssible values) on the variable
(3) multiply both sides of the equation by the lowest common denominator LCD to eliminate the denominator
(4) Solve for the variable may be a quadratic
(5) Check your answers... Identify extraneous roots.
\rightarrow Substitute solution (root) into original equation to see if it works
\rightarrow Compare your solution to non-permissible values) on the variable

$$
\begin{gathered}
a \neq 0 \\
\text { e.g.1: } \quad \frac{4}{a}=\frac{1}{2}+\frac{3}{5 a} \quad \text { LCD: } 10 a
\end{gathered}
$$

$$
\frac{10 a}{1}\left(\frac{4}{a}\right)=\left(\frac{1}{2}+\frac{3}{5 a}\right) \frac{10 a}{1} \text { multiply both sides equ by LCD }
$$

$$
40=5 a+6 \text { Denominators cancel/ out }
$$

$$
34=5 a
$$

Solve for a
$\frac{34}{5}=a$

$$
\begin{aligned}
\text { e.g.2: } \quad \frac{4 x-3}{2 x+1} & =\frac{2 x+1}{x-4} \quad x \neq-1 / 2 \nmid 4 \\
(4 x-3)(x-4) & =(2 x+1)(2 x+1) \\
\left(4 x^{2}-19 x+12\right. & =4 x^{2}+4 x+1 \quad \text { cross multiply (tops bottom) for } x \\
-19 x+12 & =4 x+1 \\
-23 x & =-11 \\
x & =11 / 23
\end{aligned}
$$

Factor First! $\quad a \neq \pm 2 \quad \angle C D$
eg 3: Solve $\frac{2}{a^{2}-4}+\frac{10}{6 a+12}=\frac{1}{a-2}$.
$(a+2)(a-2) 6(a+2)$
multiply both sides by the LCD
ε desist factor
e.g. 4 Solve $\frac{4 k-1}{k+2}-\frac{k+1}{k-2}=\frac{k^{2}-4 k+24}{k^{2}-4} \quad K \neq \pm 2$

$$
\left(\begin{array}{cc}
k^{2}-4 & \operatorname{Lcs}: \\
(k+2)(k-2) & (k-2)
\end{array}\right.
$$

$$
6(a+2)(a-2)\left[\frac{2}{(a+2)(a-2)}+\frac{10}{6(a+2)}\right]=\left(\frac{1}{a-2}\right)(a+2)(a-2)
$$

$$
\begin{aligned}
12+10(a-2) & =6(a+2) \\
12+10 a-20 & =6 a+12 \\
4 a & =20 \\
a & =5
\end{aligned}
$$

passes the restrictions above
arr
multiply the L.C.D.
$(k+2)(k-2)\left[\frac{4 k-1}{k+2}-\frac{k+1}{k-2}\right]=\left[\frac{k^{2}-4 k+24}{(k+2)(k-2)}\right] \cdot(k+2)(k-2)$

$$
\begin{aligned}
& (4 k-1)(k-2)-[(k+1)(k+2)]=k^{2}-4 k+24 \\
& 4 k^{2}-9 k+2-k^{2}-3 k-2=k^{2}-4 k+24
\end{aligned}
$$

$$
2 k^{2}-8 k-24=0 \quad \text { quadratic! }
$$

$$
k^{2}-4 k-12=0 \text { factors! }
$$

$$
(k-6)(k+2)=0
$$

$$
k=6 \text { \& } \sum^{-2} \begin{aligned}
& \text { but } \\
& \\
& k \neq-2 \\
& \text { from }
\end{aligned}
$$ from above!

extraneous root

$$
k=6
$$

